The cost of wind-solar hybrid power generation for communication base stations What is a hybrid solar energy system? This hybrid system can take advantage of the complementary nature of solar and wind energy: solar panels produce more electricity during sunny days when the wind might not be blowing, and wind turbines can generate electricity at night or during cloudy days when solar panels are less effective. Can a solar PV/fuel cell hybrid system power a base station? This study presents an analysis of a solar PV/fuel cell hybrid system to power a base station located at Budumburam, in the Central Region of Ghana. HOMER was used to perform a complete parametric analysis of the system. The NPC and LCOE were selected as the principal economic indicators. Why are hybrid energy systems more expensive than single-source systems? Hybrid systems may have higher initial investment costscompared to single-source systems. The variability of renewable energy can affect the predictability of returns on investment. Some technologies in HRES might not be mature, leading to economic uncertainties. Can solar PV/fuel cell hybrid system power telecom base stations in Ghana? This study investigates the viability of deploying solar PV/fuel cell hybrid system to power telecom base stations in Ghana. Furthermore, the study tests the proposed power system resilience by comparing its technical, economic, and environmental performance to PV/diesel and diesel power systems. Should solar and wind energy systems be integrated? Despite the individual merits of solar and wind energy systems, their intermittent nature and geographical limitations have spurred interest in hybrid solutions that maximize efficiency and reliability through integrated systems. How much energy does a hybrid power system generate a year? Simulation results revealed that the hybrid power system generated a total of 1509.85 GW h/year of electricity annually. Specifically,the PV station contributed 118.15 GW h/year (7.83 %),while the wind farm provided 1391.7 GW h/year (92.17 %) of the total energy output. Since base stations are major consumers of cellular networks energy with significant contribution to operational expenditures, powering base stations sites using the energy of wind, sun, fuel ... The cost of wind-solar hybrid power generation for communication base stations Web: https://edukacja-aktywna.pl